Washington State University

Research Forums

The School of Mechanical and Materials Engineering

Research Forums

Interdisciplinary Excellence Built On World-Class Knowledge

Multiscale Modeling and Characterization of Materials

Advances in nanotechnology and the rapid decrease in size of electronic components, micromechanical devices, sensors and coatings, have brought about the need for multiscale models, i.e., the models that bridge length and time scales associated with relevant physical processes, as well the ability to perform multiscale characterization of a material, i.e., to characterize the structure and its evolution with deformation on different scales.

Such modeling and characterization efforts usually demand unification of hitherto separate specialist knowledge and expertise areas of science and engineering an interdisciplinary approach, as well as a massive computational power and cutting edge characterization tools.

Multiscale problems are ubiquitous in a number of research areas. Nano- and micro-structured materials, multi-layers, large organic molecules, small-scale plasticity, and granular materials are only some of the examples where a multiscale approach is required to fully understand the performance of the material. Simply stated, a multiscale problem is such that the fine-scale model associated with the problem is computationally intractable, while the coarse-scale model is much too coarse to reveal the underlying physical mechanisms.

Rational design of material microstructure requires reliable and accurate predictive models, which in turn require understanding of the collective behavior of interacting elements of the micro- or nano-structure. The resulting models must often span several length and time scales, as well as unify dissimilar mathematical structures. Multiscale models, on the other hand, require a starting point a well-characterized micro- or nano-structure, and should be validated by use of experimental benchmarks, i.e., microscopic and mesoscopic characterization.

We envision strong future growth in the areas of multiscale modeling and multiscale characterization, within the MME and VCEA and through collaboration with the College of Sciences, in support to the WSU Strategic Research Focus Areas: Materials Science and Engineering, Biotechnology and Nanotechnology.

The MME core of the forum includes the following faculty: A. Bandyopadhyay, S. Bose, J-L. Ding, I. Dutta, D. P. Field, J, Leachman, K. Lynn, S. Dj. Mesarovic, M. G. Norton, J. Panchal, L.V. Smith, H. M. Zbib, and K. Zhong. Their combined expertise spans the broad spectrum of problems in thermo-mechanics of materials.

Faculty Profiles

pictureOn this visit we highlight:
Dustin McLarty
Assistant Professor
Ph.D. in Mechanical Engineering from University of California, 2013 with MME since 2015, more...

Research Areas

  • High temperature fuel cells
  • Distributed generation systems
  • Energy storage dynamics and integration with renewable sources
School of Mechanical and Materials Engineering, PO Box 642920, Washington State University, Pullman WA 99164-2920, 509-335-8654, Contact Us